

INSTITUTO FEDERAL DO PARANÁ – CÂMPUS PITANGA PLANO DE ENSINO – 2018

1. IDENTIFICAÇÃO

Curso: Técnico Integrado em Cooperativismo

Componente Curricular: Física I - DP

Professor: Wesley Renzi

Série/Semestre: 1ª/1º e 2º

Carga Horária: 1,5 h/semana

Turno: Vespertino - Plano

de Estudos Individual.

2. EMENTA:

- Grandezas Físicas e unidades de medida.
- O sistema internacional de unidades.
- Conceitos fundamentais relacionados a cinemática escalar: referencial, posição, deslocamento, velocidade, aceleração.
- O tempo e o espaço Diferentes visões na filosofia.
- Movimento retilíneo uniforme.
- Movimento retilíneo uniformemente variado.
- Movimento Circular.
- Cinemática Vetorial.
- Dinâmica Leis de Newton.
- Tipos de força: força de atrito, força elástica, força gravitacional, força normal.
- Máquinas simples.
- Trabalho e energia cinética.
- Potência e rendimento.
- Teorema da energia cinética.
- Energia potencial gravitacional e energia potencial elástica.
- Energia mecânica e conservação de energia.
- Impulso e teorema do impulso.
- Quantidade de movimento.

Rua José de Alencar, nº 880 - Vila Planalto - Pitanga Pr

- Conservação da quantidade de movimento.
- Leis de conservação aplicadas ao estudo dos movimentos.
- Leis de Kepler.
- Lei da gravitação universal.
- Campo gravitacional.
- Energia potencial gravitacional.
- Rotação e translacação da Terra.
- Noções de balística e movimento de satélites.

3. OBJETIVOS DO COMPONENTE CURRICULAR:

3.1 Gerais:

- Apresentar a Física como uma ciência não neutra e historicamente constituída associada ao estudo da natureza, no caso da disciplina de Física I esse estudo é voltado principalmente ao estudo da Mecânica Clássica.
- Compreender, interpretar, analisar e estabelecer conexões entre os conceitos físicos relativos ao estudo dos movimentos com situações do cotidiano das pessoas.

3.2 Específicos:

- Identificar e interpretar grandezas e suas respectivas unidades de medida.
- Caracterizar a magnitude de fenômenos a partir de suas ordens de grandeza.
- Compreender e diferenciar os diferentes tipos de movimentos estudados na cinemática escalar.
- Compreender e diferenciar grandezas físicas escalares e vetoriais.
- Compreender o conceito de vetor e ser capaz de realizar operações que envolvam grandezas vetoriais.
- Caracterizar a manifestação de uma força como agente que produz alteração no estado de movimento de um corpo.
- Discutir e interpretar as Leis de Newton e o conceito de inércia, utilizando-as na resolução de problemas físicos do cotidiano dos estudantes.

- Investigar o conceito de energia no contexto da mecânica bem como a ideia de sua conservação.
- Investigar o conceito de impulso no contexto da mecânica.
- Investigar o conceito de quantidade de movimento no contexto da mecânica bem como a ideia de sua conservação.
- Identificar a interação de natureza gravitacional associada à presença da massa no espaço e a trajetória deste conjunto de estudos ao longo da história da ciência.
- Investigar o movimento de corpos que se movem sob a ação de um campo gravitacional.
- Entender que as leis físicas representam modelos que procuram traduzir, segundo o momento histórico em que se manifestam, a harmonia e a organização presentes na natureza.
- Ressaltar o caráter não neutro e historicamente constituído da ciência e a relação ciência/tecnologia/sociedade/mercado/meio ambiente.

4. CONTEÚDO PROGRAMÁTICO:

Bimestre	Conteúdos						
	Grandezas Físicas e unidades de medida.						
1º Bimestre	O sistema internacional de unidades.						
	Conceitos fundamentais relacionados a cinemática escalar:						
	referencial, posição, deslocamento, velocidade, aceleração.						
	 O tempo e o espaço – Diferentes visões na filosofia. 						
	Movimento retilíneo uniforme.						
	 Movimento retilíneo uniformemente variado. 						
	Movimento Circular.						
	Dinâmica – Leis de Newton.						
2º Bimestre	 Tipos de força: força de atrito, força elástica, força 						
	gravitacional, força normal.						
	Máquinas simples.						
	 Trabalho e energia cinética. 						

	 Energia potencial gravitacional e energia potencial elástica. 					
	 Energia mecânica e conservação de energia. 					
3° Bimestre	Impulso e teorema do impulso.					
	Quantidade de movimento.					
	 Conservação da quantidade de movimento. 					
	 Leis de conservação aplicadas ao estudo dos movimentos. 					
	 Leis de Kepler. 					
	 Lei da gravitação universal. 					
4º Bimestre	 Campo gravitacional. 					
	 Energia potencial gravitacional. 					
	 Rotação e translacação da Terra. 					
	 Noções de balística e movimento de satélites. 					

5. AVALIAÇÃO:

5.1 Avaliação da Aprendizagem

A avaliação ocorrerá de forma contínua, somatória e diagnóstica e não de forma pontual. Será aprovado no final do ano letivo o estudante que obtiver conceito final C ou superior e frequência mínima de 75% das aulas programadas.

5.2 Instrumentos

- Avaliações dissertativas e/ou objetivas com questões conceituais e resolução de problemas;
- Atividades realizadas em sala de aula;
- Pesquisas;
- Seminários;
- Participação durante as aulas presenciais e experimentais;
- Relatórios de visitas técnicas.
- Debates;

- Trabalhos (tarefa de casa, relatórios de atividades de laboratório).
- Atividades virtuais propostas através do Sistema Karavellas.

5.3 Critérios

- Verificação da formação, construção e reconstrução de conceitos científicos;
- Valorização dos conhecimentos prévios do aluno e a sua interação com os conceitos físicos;
- Contemplar as várias formas de expressão dos alunos: leitura, interpretação e produção de textos, leitura e interpretação de conceitos físicos e sua representação matemática, pesquisa bibliográficas, relatórios de aulas em laboratório, apresentação de seminários.
- Averiguação da apropriação efetiva de conhecimentos que contribuam para transformar a própria realidade do aluno.

6. ATIVIDADES EXTRA CLASSE A SEREM DESENVOLVIDAS

Serão realizadas atividades como participações em eventos, feiras, palestras e visitas de campo respeitando o planejamento da disciplina e que sejam relacionados a disciplina ou ao curso.

7. RECUPERAÇÃO PARALELA

Após as avaliações serão oportunizadas recuperações de conteúdos através de atividades que possibilitem uma retomada dos mesmos. Serão oferecidas também novas avaliações e os trabalhos poderão ser corrigidos e melhorados a fim de recuperar os conceitos.

8 REFERÊNCIAS

8.1 Básicas

MÁXIMA, A. : ALVARENGA, B. Curso de Física, Vol. 1, 1° ed., São Paulo: Editora Scipione, 2011.

GASPAR, A. Física, Vol. 1. São Paulo: Editora Ática, 2008.

SANT'ANNA, MARTINI, REIS, SPINELLI. Conexões com a Física, Vol. 1, 1° ed, São Paulo: Editora Moderna, 2010.

TORRES, C. M. A., FERRARO, N. G, SOARES, P. A. T. Física: ciência e tecnologia, Vol. 1, 2° ed, São Paulo: Editora Moderna, 2010.

XAVIER, BENIGNO. Coleção Fisica aula por aula, Vol. 1, 1° ed, São Paulo: Editora FTD, 2010.

8.2 Complementares

MOYSÉIS, A,; LINS, S. Gravitação e Ondas, Fortaleza: Ed. Vestseller, 1989.

KANTOR JUNIOR, C. L., MENEZES JUNIOR, L. O.; ALVES, V. Coleção Quanta Física, Vol.1, 1°ed., São Paulo: Editora PD, 2010.

RENATO, B. Fundamentos de Mecânica: Cinemática/Leis de Newton, Vol. 1,1° ed., Fortaleza: Editora Vestseller, 2007.

RENATO B. Fundamentos de Mecânica: Trabalho e Energia, Sistema de Partículas, Dinâmica do Centro de Massa. Sistema com Massa Variável. Vol. 2, 1°ed., Fortaleza: Editora Vestseller, 2009.

FILHO, G. A.; TOSCANO, A. Física. Ensino Médio - Volume Único, 1° ed, São Paulo: Editora Scipione, 2003.

9. OBSERVAÇÕES

O Plano de Ensino está sujeito a alterações de acordo com as necessidades dos discentes, docentes e da Instituição.

Pitanga, 08 de junho de 2018.

10. RECEBIMENTO

Recebido em:	081	06	/2018
	/)		

Assinatura:

Wesley Renzi

Docente SIAPE 3045325

Prof^a Angélica de Sousa Hrysyk Coordenadora do Curso Técnico

Integrado em Cooperativismo

Prof. Marcio Miguel Aguiar
Diretor de Ensino Pesquisa e
Extensão